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LETTER TO THE EDITOR 

The (n = 0)-component Gross-Neveu model as a description of 
polymers in two dimensions 

K Ziegler 
Department of Physics, Clarkson University, Potsdam, NY 13676, USA and Fachbereich 
Physik 7, Universitat Essen, 4300 Essen, Federal Republic of Germany 

Received 29 March 1988 

Abstract. A modified Gross-Neveu model with n = O  (two fermion and two boson) com- 
ponents is considered in two space dimensions. This model is equivalent, in terms of 
perturbation theory, to the Gross-Neveu model with a 2n-component fermion field, 
combined with the replica trick n + 0. Using the universality hypothesis, we demonstrate 
that the model is related to the statistics of polymer chains. This result extends earlier 
investigation$, obtained in a strong coupling expansion. 

The ( n  = 0)-component Gross-Neveu model, defined as a lattice field theory, has been 
used by several authors as a description of disordered magnetic systems [l] and 
degenerated semiconductors [ 21 in two dimensions. A recent investigation of this 
model has pointed out that there is spontaneous symmetry breaking [3,4] similar to 
that of the model with n > 0 [ 5 ] .  Since the perturbation theory, combined with the 
replica trick n + 0, is in disagreement with this observation [ l ,  31, it seems to be useful 
to pursue some non-perturbative investigations of this model. 

A renormalisation group calculation indicates that the free-field limit of the model 
is unstable against a perturbation by an arbitrary small interaction term [3]. This result 
is not surprising, because the free-field theory obeys the symmetry mentioned above. 
Therefore, there is no obvious method for treating this model in terms of a perturbation 
theory for small interaction. 

On the other hand, a strong coupling expansion is convergent, the radius of 
convergence is of order one and has been estimated [3]. The correlation length is 
always finite in the region of convergence and of the order log(g), where g is the 
coupling constant. 

The aim of this letter is to show that the properties of the strong coupling region 
survive for any small positive coupling constant g, provided the universality hypothesis 
holds. Thus there is no ‘crossover’ behaviour from strong coupling to the free-field 
theory, but the model distinguishes only the interacting and the free-field region. 

The Gross-Neveu model on the square lattice A is defined by the action 
A = -  6 , . a r , , & , , - g  (6,*@,)’ 

r , r ’ sA  r E A  

where the propagation of the field CP is given by 
a = a,dl + a&. 

ul, u2 are Pauli matrices and a, is the difference operator 
for r ’ = r f e j  
otherwise 

(ajlr,,, = { *’ 
0 
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with the lattice unit vector ej. According to [ 5 ] ,  @ is a 2n-component fermion field. 
Moreover, we notice that the field theory with 2nf=2n fermion components is 
equivalent to a model with the same action but with 2nf = 2( n + nb) fermion and 2nb 
boson components [ 6 ] ,  i.e. the model depends effectively only on the difference 
2(nf- nb). Therefore, it is convenient (and formally correct) to consider the ( n  = 
0)-component Gross-Neveu model as a field theory with an equal number of fermion 
and boson components. For simplicity, we use here n, = nb = 1: 

@ r  = (“ l ,r ,  “ 2 , r ,  X l , r ,  ~ 2 . r )  (4) 

where the fermion part W is a Grassmannian and the boson part x is a complex field. 
Correlation functions or Green functions are given by expectation values 

(. . . ) = I . . . exp(-A) fl d@, d 6 ,  
rei \  

( 5 )  

with respect to the field @. In order to work with well defined integrations in the 
boson sector, we define a conjugate field in (1) as 

where D, is a staggered field: 

Or = ( - ~ ) “ I + ~ z  (7) 

and the asterisk means complex conjugation. Such a special choice is not necessary 
in the fermion sector, because W and q are independent Grassmannians and no 
problem occurs for the integration. Nevertheless, it is formally convenient to have the 
same propagators in both sectors. Therefore, we substitute in ( 1 )  

q,,,r + iDr$,,,r. 

The action of (1) is then 

with the conjugate field 

It should be emphasised that this representation of the ( n  = 0)-component Gross-Neveu 
model is identical to the replica trick in terms of a perturbation theory around g = 0. 
The factor iD, can then be eliminated by a rescaling of the fields for each term of the 
expansion. 

Due to the staggered field in the first term of (9) ,  the inverse propagator Da is 
translational invariant only on the sublattice A,, for which D, = (-l)@. We shall show 
now that the ( n  =O)-component Gross-Neveu model on A is related to a model of 
polymers on the sublattice A*. 

Since nearest-neighbour pairs of lattice points do not belong to the same sublattice, 
we may write for the non-local term of A 

6 r *  (Da)r,r@r,= [6 , , - (Da@)r+(6Da) r*@r] .  (10) 
r,r’eA re i \ ,  
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Furthermore, we express the interaction on A, by coupling @ to an auxiliary Gaussian 
field V, by means of the identity 

exp[-g(6,. @r121 

exp[i( V, + i&)Gr - @,I 

(11)  
I = (4g7r) 

x exp[-( V , + i ~ ) ~ / 4 g ]  dV, E > 0 

in the expectation value (5 ) .  After interchange of the integration over O r ,  6r and V,, 
the former integration can be performed on A, now, because the action is bilinear in 
these fields. Although this could be done in general, we consider in the following only 
expectation values with respect to the sublattice A,, for simplicity. Thus we obtain a 
model of the fields @ on A, and V on A l :  
A,(@, V)= [i(Vr+ie)-1(6Da),-(Da@)r+(Vr+is)2/4g]+g (6?*@,), (12) 

and 
r e A I  reA2  

( . . . ) = I . . . exp(-A,) fl (4g7r)-”’ dV, fl d@, d6 , .  

I-, 13 1 

(13)  
r e A I  ,EA2 

Finally, also the field V can be eliminated by integration in order to find a model 
which describes only a field on the sublattice A,. The integral 

limEi,, (4gr)-’l2 

with the coefficients 

m 

e x p [ - ( x + i ~ ) ~ / 4 g + a / ( x + i e ) ] d x =  l + i  dlal (14)  

yields a convergent series for any finite a. As a consequence, the effective action on 
A, is then 

This rather complicated expression can be related to a simpler model by applying the 
universality hypothesis. The latter is based on the assumption that the qualitative 
properties of a model are not affected by all terms of the action in a relevant manner. 

A typical parameter of a lattice model is the lattice constant. We do not expect, 
for instance, that the long-range behaviour (e.g. the correlation length) will change 
significantly under a change of this parameter. Therefore, we consider only terms of 
the action as relevant for the qualitative properties which do not become small with 
decreasing lattice constant. However, this does not mean that we take the continuum 
limit of the lattice model! The influence of the lattice structure on the model under 
consideration can be studied easily when we introduce a lattice constant a d  ( a  < 1) 
instead of 4 on A2. The sum XrEA2 becomes on the new lattice A: 

while the inverse propagator rescales: 
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We may expand the logarithmic term of A2 and study the effect of the shrinking lattice. 
The expansion term [(@Dd), ( D c ~ @ ) ~ ] ~  is then related to the corresponding 
expression on the new lattice by 

[ ( m a ) ,  - (De@), ] ‘  = ay’ u2 [(G” - (oa(at),]‘ ) (19)  
r e A l  ( r e A ;  

with the field @‘ on Ah and the exponent 

VI = 2(1- 1 ) .  (20) 
Thus only the term with 1 = 1,  the leading term of the expansion, is relevant, because 
all other terms appear with coefficients decreasing with a decreasing lattice constant. 
On the other hand, the local interaction term in (16) is increasing with a shrinking lattice: 

After rescaling of the fields by ( ~ / 4 g ) ” ~ ,  the action Az is, therefore, equivalent to 

in the sense of the universality hypothesis. 
The summation over A, can be performed. We find with (3) that 

(GDa), - (Dam), = A , , ,  Gr Q r ,  
r E A ,  r,r’EA2 

where A is the lattice Laplacian 

r t =  r 
r t =  r i 2 e j  
otherwise. 

This model describes the ‘excluded volume’ problem which is related to the statistics 
of polymer chains with a repulsive intrachain interaction [ 7 ] .  Although it is common 
to use the replica trick in the boson sector to formulate the polymer model (i.e. there 

A1 r A 2  
o n o  0 0  

0 0 0  0 0  

0 r ’  

0 

0 

0 0  0 0  

Figure 1. The square lattice A with the sublattices A , ,  A,,  the unit vectors e , ,  e2 and a 
typical polymer on A2.  
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are no fermion degrees of freedom), the fermion-boson representation of (22) is 
equivalent to this trick. 

The effect of the repulsive self-interaction becomes apparent when we write the 
expectation values of the lattice field model as a statistical sum over polymer configur- 
ations. We apply for this purpose the identity (11) to the local interaction in (22). 
Introducing an auxiliary Gaussian field rpr, we obtain the bilinear action 

A3 = c Ar,r,&r * CPrf+i pr&r C P r .  ( 2 5 )  
The CP integration can be done explicitly and yields, for instance, for the correlation 
function 

The bar denotes averaging over the Gaussian field rp. We obtain from the expansion 
of the inverse random matrix on the RHS, in powers of its off -diagonal elements ( I d  
is here the unit matrix) 

A -  Id (27) 
a sum over polymer chains starting at r and terminating at r': 

((h+irp)-'),,. = ( ( I d  + irp)-' X,2,r- , , ,  [ ( I d  -A) (  Id + irp)-']')r,rr. (28) 
The elements of the polymer chains, the monomers, have length 2 due to the lattice 
Laplacian (24) which connects points of distance 2. Therefore, only points r, r' with 
Ir, - ril and Ir,- r;l zero or even can be connected by such polymers. 

The RHS of (28) is a sum over statistical weights, since the matrix elements 

Id - A( =O, t )  (29) 
are non-negative and the expectation values are positive: 

(l+irp)-'=[(Z-l)!]-' -t'-'exp[-(l+irp)t]dt 

and after integration over p 

(1 +irp)-' = [ ( I  - l)!]-' ? I - '  exp( --t - gt') dt  > 0. lom 
The self-repulsion is given by the fact that a self-crossing chain appears with a reduced 
statistical weight in comparison with a non-crossing chain due to the inequality 

(l+irp,)-'-'< (l+irp,)-' (l+irpr)-'. (31) 
Furthermore, the boundedness of 

and its asymptotic behaviour for g - 0 

7 - 1 - 2g2/ ?7 

ensure the existence of the series in (28). There are at most 4R different polymers 
consisting of R monomers, since each monomer can be arranged in four different 
directions on the square lattice. Each contributes a factor a according to (29). Hence 
the RHS of (28) is bounded from above by 
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i.e. the correlation function decays exponentially for any g > 0. A non-exponential 
decay can occur if we add a negative mass term 

to the action A of (22). However, such a mass term would correspond to an imaginary 
mass of the Gross-Neveu model (l), a case which has not been considered on a 
physical basis, so far. 

The interpretation of the (n = 0)-component Gross-Neveu model in terms of 
classical statistics supports earlier speculations, based on the renormalisation group 
theory and strong coupling expansion [3], that this model cannot describe critical 
behaviour of disordered spin systems in two dimensions. 

The author is grateful for hospitality at the Department of Physics, Clarkson University. 
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